eSPA
Documentation for eSPA.
eSPA.eSPA
eSPA.GOAL
eSPA.eSPAdiscrete
eSPA.eSPAfuzzy
eSPA.eSPAhybrid
eSPA.eSPAplus
eSPA.fit!
eSPA.fit!
eSPA.fit!
eSPA.fit!
eSPA.fit!
eSPA.predict
eSPA.predict
eSPA.predict
eSPA.predict
eSPA.predict
eSPA.eSPA
— ModuleeSPA.jl
Implementations of eSPA, eSPA+ and GOAl.
Exports:
eSPAdiscrete
eSPAfuzzy
eSPAplus
GOAL
eSPAhybrid
fit!
predict
eSPA.GOAL
— TypeGOAL(K::Int, eps_CL::Float64, G::Int, tol::Float64, max_iter::Int)
Implementation of GOAL [Vecchi+2024]
Fields
K::Int
: Number of Clusterseps_CL::Float64
: Hyperparameter for the classifyer lossG::Int
: Dimension of Gaugetol::Float64
: Break-condition for optimizaitonmax_iter::Int
: Maximum number of optimization iterations
eSPA.eSPAdiscrete
— TypeeSPAdiscrete(K::Int, eps_CL::Float64, eps_E::Float64, tol::Float64, max_iter::Int)
Discrete version of eSPA [Horenko2020]
Fields
K::Int
: Number of Clusterseps_CL::Float64
: Hyperparameter for the classifyer losseps_E::Float64
: Hyperparameter for the feature selection losstol::Float64
: Break-condition for optimizaitonmax_iter::Int
: Maximum number of optimization iterations
eSPA.eSPAfuzzy
— TypeeSPAfuzzy(K::Int, eps_CL::Float64, eps_E::Float64, tol::Float64, max_iter::Int)
Fuzzy version of eSPA [Horenko2020]
Fields
K::Int
: Number of Clusterseps_CL::Float64
: Hyperparameter for the classifyer losseps_E::Float64
: Hyperparameter for the feature selection losstol::Float64
: Break-condition for optimizaitonmax_iter::Int
: Maximum number of optimization iterations
eSPA.eSPAhybrid
— TypeeSPAhybrid(K::Int, eps_CL::Float64, eps_E::Float64, tol::Float64, max_iter::Int, num_fuzzy_steps::Int)
Fields
K::Int
: Number of Clusterseps_CL::Float64
: Hyperparameter for the classifyer losseps_E::Float64
: Hyperparameter for the feature selection losstol::Float64
: Break-condition for discrete optimizaitonmax_iter::Int
:num_fuzzy_steps::Int
: NUmber of fuzzy steps after discrete steps are finished
eSPA.eSPAplus
— TypeeSPAplus(K::Int, eps_CL::Float64, eps_E::Float64, tol::Float64, max_iter::Int)
Implementation of eSPA+ [Vecchi+2022]
Fields
K::Int
: Number of Clusterseps_CL::Float64
: Hyperparameter for the classifyer losseps_E::Float64
: Hyperparameter for the feature selection losstol::Float64
: Break-condition for optimizaitonmax_iter::Int
: Maximum number of optimization iterations
eSPA.fit!
— Methodfit!(model::GOAL, X::AbstractMatrix, y::AbstractVector)
Train GOAL with Data.
Arguments:
model::GOAL
: Model instance to train.X::AbstractMatrix
: Data matrix which includes the features. Rows contain the features, Columns the data point.y::AbstractVector
: Data labels. The labels should be Integers between 1 and M.
eSPA.fit!
— Methodfit!(model::eSPAdiscrete, X::AbstractMatrix, y::AbstractVector)
Train eSPAdiscrete with Data.
Arguments:
model::eSPAdiscrete
: Model instance to train.X::AbstractMatrix
: Data matrix which includes the features. Rows contain the features, Columns the data point.y::AbstractVector
: Data labels. The labels should be Integers between 1 and M.
eSPA.fit!
— Methodfit!(model::eSPAfuzzy, X::AbstractMatrix, y::AbstractVector)
Train eSPAfuzzy with Data.
Arguments:
model::eSPAfuzzy
: Model instance to train.X::AbstractMatrix
: Data matrix which includes the features. Rows contain the features, Columns the data point.y::AbstractVector
: Data labels. The labels should be Integers between 1 and M.
eSPA.fit!
— Methodfit!(model::eSPAhybrid, X::AbstractMatrix, y::AbstractVector)
Train eSPAhybrid with Data.
Arguments:
model::eSPAhybrid
: Model instance to train.X::AbstractMatrix
: Data matrix which includes the features. Rows contain the features, Columns the data point.y::AbstractVector
: Data labels. The labels should be Integers between 1 and M.
eSPA.fit!
— Methodfit!(model::eSPAplus, X::AbstractMatrix, y::AbstractVector)
Train eSPAplus with Data.
Arguments:
model::eSPAplus
: Model instance to train.X::AbstractMatrix
: Data matrix which includes the features. Rows contain the features, Columns the data point.y::AbstractVector
: Data labels. The labels should be Integers between 1 and M.
eSPA.predict
— Methodpredict(model::GOAL, X::AbstractMatrix)
Calculate predictions.
Arguments:
model::GOAL
: Trained instance of GOAL.X::AbstractMatrix
: Data matrix which includes the features. Rows contain the features, Columns the data point.
eSPA.predict
— Methodpredict(model::eSPAdiscrete, X::AbstractMatrix)
Calculate predictions.
Arguments:
model::eSPAdiscrete
: Trained instance of eSPAdiscrete.X::AbstractMatrix
: Data matrix which includes the features. Rows contain the features, Columns the data point.
eSPA.predict
— Methodpredict(model::eSPAfuzzy, X::AbstractMatrix)
Calculate predictions.
Arguments:
model::eSPAfuzzy
: Trained instance of eSPAfuzzy.X::AbstractMatrix
: Data matrix which includes the features. Rows contain the features, Columns the data point.
eSPA.predict
— Methodpredict(model::eSPAhybrid, X::AbstractMatrix)
Calculate predictions.
Arguments:
model::eSPAhybrid
: Trained instance of eSPAhybrid.X::AbstractMatrix
: Data matrix which includes the features. Rows contain the features, Columns the data point.
eSPA.predict
— Methodpredict(model::eSPAplus, X::AbstractMatrix)
Calculate predictions.
Arguments:
model::eSPAplus
: Trained instance of eSPAplus.X::AbstractMatrix
: Data matrix which includes the features. Rows contain the features, Columns the data point.